# INCREASING RELIABILITY OF CHEMICAL PUMPS PAKAGE BY USING SS316L IN OIL PRODUCTION WELLS

Timori, F. 1\*

<sup>1</sup>Pertamina EP Prabumulih, South Sumatera, Indonesia

#### **ABSTRACT**

The reliability of production facilities in the oil and gas industry greatly affects the resilience of production. To maintain the reliability of production facilities, it is necessary to carry out preventive maintenance (PM), corrective maintenance (CM), risk base inspection (RBI) and reliability center maintenance (RCM) programs. On this occasion, the author raised the problem of RBI on the chemical pump skid in the oil production well which decreased reliability due to corrosion. Chemicals injected into the pipeline are acidic, where the liquid serves to prevent calcium carbonate (CaCO<sub>3</sub>) scale formation in the pipe. The skid and liquid reservoir are made by carbon steel, resulting in frequent leaks in the tub and the skid is not sturdy enough to support the load. With the use of SS316L material for the tank and pump skid, the damage caused by corrosion can be overcome so that the reliability of the chemical pump can be maintained.

Keywords: Reliability, Corrosion, SS316, Calcium Carbonate

### 1 INTRODUCTION

Most of the oil production wells need to be installed with chemical pumps. This chemical pump functions as a chemical distribution tool whose job is to control the hydrocarbon liquid so that it can flow smoothly to its destination. The impact that will occur if not controlled can result in Lost Production Opportunity (LPO) due to blockage of the distribution pipe and can also damage the company's image if there is a leak in the distribution pipe.

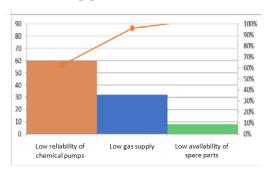



Figure 1. Identification of problems in the chemical pump

The results of the identification of problem with chemical pumps are the low reliability of the pump.

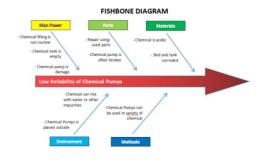



Figure 2. Fish Bone Diagram

| No | Root factor<br>Reason | Analysis / Description<br>Cause and effect                                                                                        | Results<br>Field test                                                                                                                                | Correlation<br>(Yes/No) |
|----|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1  | Man                   | Chemical filling not a routine                                                                                                    | There are operators at each collecting<br>station, but their responsibilities<br>include all production facilities.                                  | No                      |
| 2  | Tool                  | Use of used spare<br>parts to repair<br>chemical pumps                                                                            | Yes                                                                                                                                                  |                         |
| 3  | Ingredient            | The material used in<br>the skid and the Most<br>Social Chemical Pump<br>Tank                                                     | Based on the results of the sample it<br>is known that the tank and skid<br>material can not stand the chemical<br>characteristics that are injected | Yes                     |
| 4  | Method                | The unavailability of<br>standard types of<br>chemical pump<br>material set materials<br>compared to the type<br>of chemical used | Several studies have been conducted<br>to see the correlation between<br>material and chemical                                                       | Yes                     |
| 5  | Environment           | Chemical pump is placed outdoor                                                                                                   | With the condition of the chemical<br>pump being outdoor, the possibility of<br>chemicals mixed with other impurities<br>greater                     | No                      |

Tabel 1. Correlation Analysis

<sup>\*</sup>Corresponding author's email: fajar.timori@gmail.com

|   | Root cause /<br>cause                                                                                                                | Impact / effect                                                                  | s | o | D | RPN | %<br>Cumulative |
|---|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---|---|---|-----|-----------------|
| Α | The material used in<br>the skid and the<br>Most Social<br>Chemical Pump<br>Tank                                                     | Skid and<br>Chemical Pump<br>Tank Leaking                                        | 5 | 5 | 5 | 80  | 83.3%           |
| В | Use of used spare parts to repair chemical pumps                                                                                     | Chemical pumps often stuck                                                       | 3 | 2 | 2 | 12  | 95.8%           |
| С | The unavailability of<br>standard types of<br>chemical pump<br>material set<br>materials compared<br>to the type of<br>chemical used | Purchase pumps<br>and accessories<br>never stand the<br>type of chemical<br>used | 1 | 2 | 2 | 4   | 100.0%          |

Tabel 2 Pareto Dominant Cause

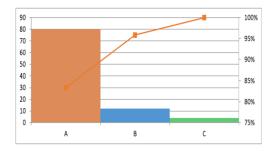



Figure 3 Pareto Dominant Cause

Based on Pareto, the dominant cause can be seen that the skid material used is corroded by the chemical being treated so that often the pump cannot function properly.

#### 2 LITERATURE STUDY

#### 2.1 Corrosion

Corrosion is the process of decreasing the reliability of metals due to chemical reactions in their environment. There are two differences in the process of corrosion, namely wet corrosion and dry corrosion. The corrosion occurs due to chemical, thermodynamic, metallurgical and electrochemical factors. There are 8 classes of corrosion, namely well corrosion, crevice corrosion, galvanic corrosion, grain boundary corrosion, erosion corrosion, selective corrosion, stress corrosion and selective corrosion. In everyday life corrosion is known as iron rust.[1]

Corrosion occurs because the metal is oxidized, while oxygen (air) is reduced. Redbrown metal rust in the form of solid oxides or carbonates.

The Chemical formula for iron rust is Fe2O3.nH2O,

The electrochemical process in certain parts of the corrosion of iron acts as the anode, where the iron is oxidized.

$$Fe(s) < --> Fe2 + (aq) + 2e$$

The electrons liberated at the anode flow to another part of the iron which acts as the cathode, where oxygen is reduced.

$$O2(gas) + 2H2O(liquid) + 4e < --> 4OH-(aqua)$$

$$O2(gas) + 4H + (aqua) + 4e < --> 2H2O(liquid)$$

The iron(II) ion formed at the anode is further oxidized to form iron(III) ion which then forms a hydrated oxide compound, namely iron rust. To find out which part of the iron acts as the anode and cathode, it depends on various factors, including differences in the density of the metal or impurities.

will Corrosion damage the metal electrochemically or also called chemically, which is the reverse process of extracting metal from the mineral ore. It can be seen that iron ore in the wild exists in the form of iron oxide compounds or also iron sulfide, after going through extraction and processing to produce iron for use in the manufacture of steel or alloy steel. During use, if rust protection is not carried out, the steel will experience a reaction with the environment that causes corrosion, namely returning to iron oxide compounds

To determine the possibility of corrosion, you can use the Voltaic Series and Nernst's Equation Law. Corrosion speed can be controlled, including by placing an oxide layer because the oxide layer can block the potential difference to other electrodes which will be very different.

### 2.2 Stainless Steel

Steinless Steel is a stainless steel that contains as much as 12% Chromium, it is formed on the surface of the iron so that there is no oxidation of Ferum (Fe) [2]

SS316 is a chromium-nickel steel including molybdenum. Klik atau ketuk di sini untuk memasukkan teks. SS316 and SS304 are types of steel have many similarities but SS316 is better than SS304. The molybdenum in SS316 is more resistant to pitting and crevice corrosion in chloride environments.

SS316L is a type of low carbon steel that has better corrosion resistance, which is equipped with resistance to intergranular corrosion in welding.

SS316H is a kind of high carbon steel. This type of steel is more suitable for applications at high temperatures.

SS316Ti is a carbon steel added with Titanium. Almost the same as SS316H, SS316Ti is resistant to corrosion, and is more suitable to be applied at high temperatures, but the ability to corose is further improved, especially for formic, acetate, chloride sulfate.

#### 3 METHODOLOGY

### 3.1 Design

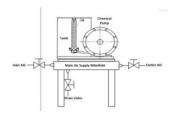



Figure 4 Pump Design

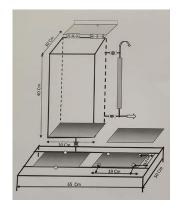



Figure 5 Tank Design

#### 3.2 Procedure

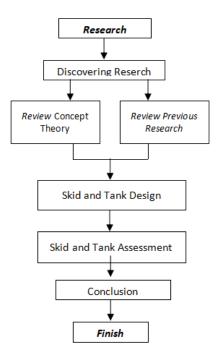



Figure 6 Process Flow Diagram

#### 3.3 Data Process

Fabrication planning will go through several considerations including cost, duration, implementation impact, risk, fabrication and material availability. This is a consideration for determining the executor of the work.

| NO | Requirements                                        | Procurement of skid<br>and new tanks | Skin repair<br>and existing tanks | Making<br>Tank skid |
|----|-----------------------------------------------------|--------------------------------------|-----------------------------------|---------------------|
| 1  | Estimated costs                                     | 50 million                           | 1 million                         | 5.5 million         |
| 2  | Job duration                                        | 24 weeks                             | 2 weeks                           | 2 weeks             |
| 3  | Work impact on disruption of oil and gas production | During installation                  | During installation               | During installation |
| 4  | risk                                                | Low                                  | High                              | Low                 |
| 5  | Fabrication & Construction                          | Third party                          | Self-subsistent                   | Self-subsistent     |
| 6  | Material needs                                      | New                                  | Used                              | Used                |
|    | Conclusion                                          | Not Seleced                          | Not Seleced                       | Selected            |

Tabel 3 Job Determination Table

For the successful implementation of the work through consideration of 5W + 1H, namely Why, What, When, Who, Where and How. The implementation of 5W+2H aims to ensure that the work can be carried out properly so that the target can be achieved. What Is a 5W2H Analysis? (And How To Use One Effectively)



Tabel 4. 5W + 2H

The implementation of the work must have Value Creation which can be viewed from Quality, Cost, Delivery, Safety and Moral. M08. Aspek Panca Mutu | PDF - Scribd

| Panca Quality | Impact of Issue / Initial Problem        | Initial repair target       |  |  |
|---------------|------------------------------------------|-----------------------------|--|--|
|               | Chemical injection processes are         | The chemical injection      |  |  |
| Quality       | disrupted due to chemical pumps          | process is uninterrupted    |  |  |
|               | frequently down                          | and continuous              |  |  |
|               | The frequency of purchasing high         | The frequency of            |  |  |
| Cost          | chemical pump spare parts                | purchasing chemical pump    |  |  |
|               | chemical pump spare parts                | spare parts drops 50%       |  |  |
|               | It takes a chemical injection downtime   | Downtime is reduced due     |  |  |
| Delivery      | time for an average of 3 hours longer    | to reduced frequency        |  |  |
|               | for chemical pump repair                 | improvements                |  |  |
|               | Chemical spills occur around a well that | Chemical has no scattered   |  |  |
| HSSE          |                                          | because the tank is in good |  |  |
|               | can absorb to the ground                 | condition                   |  |  |
| Moral         | Becomes a burden for workers for         | Repeated improvements       |  |  |
| IVIOTAL       | repeated repair of chemical pumps        | can be minimized            |  |  |

Tabel 5 Panca Mutu

The implementation of the work is expected to be completed within 2 months so that the benefits can be immediately felt for increasing the reliability of the chemical pump



Figure 7 Timeline

## 4 RESULTS AND DISCUSSIONS

The results of research and application can be measured as follows.



Figure 8 Timeline achievement

| How                               |                                                                                                                   | When                     | Who                          | Where           | Hasil<br>(Gambar, Bukti,         | How                                             | Gap     | Gap     |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-----------------|----------------------------------|-------------------------------------------------|---------|---------|
| Rencana                           | Realisasi                                                                                                         | vvnen                    | wno                          | where           | (Gambar, Bukti,<br>Dokumen, dll) | Much                                            | Finding | Solving |
|                                   |                                                                                                                   |                          | E                            | ngineering      |                                  |                                                 |         |         |
| Persiapan                         | Survey, desain,<br>dan drawing<br>SkidTang                                                                        | 1 Januari<br>2021        | Michael,<br>Husin,<br>Taufik | Kantor RAM      | - <u>I</u>                       | Man hours<br>1 days x 3<br>persons              | As plan |         |
| Pembuatan tMoC                    | Mengajukan<br>tMoC sesuai<br>dengan desain<br>yang akan<br>diaplikasikan                                          | 1 Januari<br>2021        | Regy                         | Kantor<br>HSSE  | 16                               | Man hours<br>1 day x 1<br>persons               | As plan |         |
|                                   |                                                                                                                   |                          | Pr                           | ocurement       |                                  |                                                 |         |         |
| Pengadaan<br>Material dan<br>Jasa | Membuat Memo,<br>mengumpulkan<br>material plat,<br>pipa, dan flange<br>bekas, serta<br>reservasi<br>material baru | 2-9 Januari<br>2021      | Michael                      | Kantor RAM      |                                  | Man hours<br>7 days x 1<br>persons,<br>5,5 juta | As plan |         |
|                                   |                                                                                                                   | 7                        | a                            | onstruction     |                                  | No.                                             |         |         |
| Fabrication                       | Membangun<br>Skidtang sesuai<br>desain                                                                            | 9-23 Januari<br>2021     | Regy,<br>Husin,<br>Taufik    | Workshop<br>RAM |                                  | Man hours<br>14 days x<br>3 persons             | As plan |         |
| Installation                      | Merangkai<br>Skidtang dengan<br>Pompa Chemical                                                                    | 24-25<br>Januari<br>2021 | Husin,<br>Taufik             | Abab II         |                                  | Man hours<br>2 days x 2<br>persons              | As plan |         |
|                                   |                                                                                                                   |                          | Co                           | omissioning     |                                  |                                                 |         |         |
| Comissioning                      | Menguji<br>kemampuan<br>operasional set<br>pompa chemical<br>dengan skidtang                                      | 25-31<br>Januari<br>2021 | Husin,<br>Taufik             | Abab II         |                                  | Man hours<br>6 days x 2<br>persons              | As plan |         |
|                                   |                                                                                                                   |                          |                              | Monitoring      |                                  | 1                                               |         |         |
| Monitoring                        | Mengamati<br>performa                                                                                             | Februari<br>2021         | Regy.<br>Michael             | Abab II         |                                  | Man hours<br>30 days x<br>2 persons             | As plan |         |

Tabel 9 5W+2H achievement

| Panca<br>Quality | Initial repair target                                                 | The results of the final improvement                                            | Conclusion      |
|------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|
| Quality          | The chemical injection process is uninterrupted and sustainable       | Chemical injection process to be sustainable                                    | Over the target |
| Cost             | The frequency of purchasing<br>chemical pump spare parts<br>drops 50% | Frequency of Purchasing<br>Chemical Pump Spare<br>Parts 60%                     | Over the target |
| Delivery         | Downtime is reduced due to<br>reduced repair frequency                | Chemical injection<br>downtime drops from an<br>average of 3 hours to 1<br>hour | Over the target |
| HSSE             | Chemical has no scattered<br>because the tank is in good<br>condition | Chemical has no scattered<br>because the tank is in good<br>condition           | Over the target |
| Moral            | Repeated improvements can be<br>minimized                             | Repeated improvements<br>can be minimized                                       | Over the target |

Tabel 7 Panca Mutu achievement

|   | Root cause /<br>cause                                                                                                                | Impact / effect                                                                  | s | o | D | RPN | %<br>Cumulative |
|---|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---|---|---|-----|-----------------|
| A | The material used in<br>the skid and the<br>Most Social<br>Chemical Pump<br>Tank                                                     | Skid and<br>Chemical Pump<br>Tank Leaking                                        | 5 | 5 | 5 | 80  | 83.3%           |
| В | Use of used spare parts to repair chemical pumps                                                                                     | Chemical pumps often stuck                                                       | 3 | 2 | 2 | 12  | 95.8%           |
| С | The unavailability of<br>standard types of<br>chemical pump<br>material set<br>materials compared<br>to the type of<br>chemical used | Purchase pumps<br>and accessories<br>never stand the<br>type of chemical<br>used | 1 | 2 | 2 | 4   | 100.0%          |

Tabel 8 Pareto Table

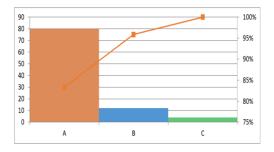



Figure 9 Pareto before

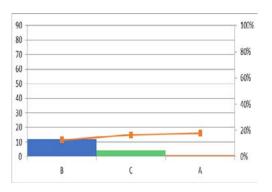



Figure 10 Pareto After



Figure 10 Trend Workorder Before and After Repair

#### 5 CONCLUSIONS

Increasing the reliability of Chemical Pumps in Production Wells can be done after going through the right research and methodologies so that they can correctly solve the problems. This can be measured from the number of Workorder to maintenance can be reduced significantly. The use of SS316L material on Skids and Tanks is the right choice for corrosive liquids

## **REFERENCES**

- [1] B. Praktis Korosi, "GADANG PRIYOTOMO," 2015. [Online]. Available: www.nulisbuku.com
- [2] T. Gde Tirta, "Diktat Material dan Proses STAINLESS STEEL."